If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+50x-1=0
a = -16; b = 50; c = -1;
Δ = b2-4ac
Δ = 502-4·(-16)·(-1)
Δ = 2436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2436}=\sqrt{4*609}=\sqrt{4}*\sqrt{609}=2\sqrt{609}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{609}}{2*-16}=\frac{-50-2\sqrt{609}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{609}}{2*-16}=\frac{-50+2\sqrt{609}}{-32} $
| 3x-4-7x=4+2x+2x | | 30/2=x/5 | | 100000/10x=0 | | 3x-72=9 | | 8-5b+8+2b=-7 | | X^2+8x+12=10 | | -4b+8=6 | | 0=21y^2+11y-2 | | 9x^2-0x+64=0 | | 0.05x^2-4x+80,8=2x+6 | | -6(-5b-7)-b=216 | | 10+(x/4)=7 | | 4.8=2.3-0.4y | | 0.05x^2-6x=-74,8 | | 4(2m+5)=52 | | 3(b-7)=(11+7)b | | 4(x+0.1=-6(0.6) | | 2(|x+3|+6)=12 | | 0=v-3/v^-9 | | 15(t-5)+6t=7(3t+5)-11 | | 10y-6y-12=55.24 | | 4x-2-2x+4=12 | | 39=0.5+2b | | x+86+5=x | | 7-2(x-8)=5-10x | | (t-7)^6-10(t-7)^3+21=0 | | 5{2x+3}-4=3x+2{x+3} | | 4x-1=45 | | 2(x^2-20x+50)=0 | | 3/2+3/4a=1a-1/2 | | 9x+12=5+10x | | (x-1)(x)(x+1)=-336 |